
The ROSETTA C++ Library: Overview of Files and Classes∗

Aleksander Øhrn†

Contents

1 Introduction 6

2 Directories and Files 7
2.1 〈stdafx.∗〉 . 7
2.2 〈main.∗〉 . 7
2.3 〈kernel〉 . 7

2.3.1 〈kernel/basic〉 . 7
2.3.1.1 〈kernel/basic/array.∗〉 . 7
2.3.1.2 〈kernel/basic/bits.∗〉 . 7
2.3.1.3 〈kernel/basic/handle.∗〉 . 7
2.3.1.4 〈kernel/basic/identifier.∗〉 . 8
2.3.1.5 〈kernel/basic/idholder.∗〉 . 8
2.3.1.6 〈kernel/basic/ids.∗〉 . 8
2.3.1.7 〈kernel/basic/interval.∗〉 . 8
2.3.1.8 〈kernel/basic/map.∗〉 . 8
2.3.1.9 〈kernel/basic/macros.∗〉 . 8
2.3.1.10 〈kernel/basic/memory.∗〉 . 8
2.3.1.11 〈kernel/basic/message.∗〉 . 8
2.3.1.12 〈kernel/basic/persistent.∗〉 . 8
2.3.1.13 〈kernel/basic/referent.∗〉 . 8
2.3.1.14 〈kernel/basic/string.∗〉 . 9
2.3.1.15 〈kernel/basic/types.∗〉 . 9
2.3.1.16 〈kernel/basic/undefined.∗〉 . 9
2.3.1.17 〈kernel/basic/vector.∗〉 . 9

2.3.2 〈kernel/system〉 . 9
2.3.2.1 〈kernel/system/sys〉 . 9
2.3.2.2 〈kernel/system/stl〉 . 9

2.3.3 〈kernel/structures〉 . 9
2.3.3.1 〈kernel/structures/annotatedstructure.∗〉 9
2.3.3.2 〈kernel/structures/annotation.∗〉 . 9
2.3.3.3 〈kernel/structures/approximation.∗〉 . 9
2.3.3.4 〈kernel/structures/attribute.∗〉 . 10
2.3.3.5 〈kernel/structures/batchclassification.∗〉 10
2.3.3.6 〈kernel/structures/binaryoutcomecurve.∗〉 10
2.3.3.7 〈kernel/structures/booleanfunction.∗〉 10
2.3.3.8 〈kernel/structures/booleanposfunction.∗〉 10
2.3.3.9 〈kernel/structures/booleansopfunction.∗〉 10

∗This document is under perpetual development. Last updated March 22, 2000.
†Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway. E-mail:

aleks@idi.ntnu.no.

1

aleks@idi.ntnu.no

2.3.3.10 〈kernel/structures/calibrationcurve.∗〉 10
2.3.3.11 〈kernel/structures/classification.∗〉 10
2.3.3.12 〈kernel/structures/confusionmatrix.∗〉 10
2.3.3.13 〈kernel/structures/decisiontable.∗〉 . 10
2.3.3.14 〈kernel/structures/decisiontables.∗〉 11
2.3.3.15 〈kernel/structures/dictionary.∗〉 . 11
2.3.3.16 〈kernel/structures/discernibilityfunction.∗〉 11
2.3.3.17 〈kernel/structures/discernibilitymatrix.∗〉 11
2.3.3.18 〈kernel/structures/equivalenceclass.∗〉 11
2.3.3.19 〈kernel/structures/equivalenceclasses.∗〉 11
2.3.3.20 〈kernel/structures/floatattribute.∗〉 11
2.3.3.21 〈kernel/structures/generalizeddecision.∗〉 11
2.3.3.22 〈kernel/structures/graph.∗〉 . 11
2.3.3.23 〈kernel/structures/history.∗〉 . 11
2.3.3.24 〈kernel/structures/historyentry.∗〉 . 11
2.3.3.25 〈kernel/structures/indiscernibilitygraph.∗〉 11
2.3.3.26 〈kernel/structures/informationvector.∗〉 12
2.3.3.27 〈kernel/structures/integerattribute.∗〉 12
2.3.3.28 〈kernel/structures/ksdecisiontable.∗〉 12
2.3.3.29 〈kernel/structures/ksinformationvector.∗〉 12
2.3.3.30 〈kernel/structures/ksreduct.∗〉 . 12
2.3.3.31 〈kernel/structures/ksrule.∗〉 . 12
2.3.3.32 〈kernel/structures/parentstructure.∗〉 12
2.3.3.33 〈kernel/structures/project.∗〉 . 12
2.3.3.34 〈kernel/structures/projectmanager.∗〉 12
2.3.3.35 〈kernel/structures/reduct.∗〉 . 12
2.3.3.36 〈kernel/structures/reducts.∗〉 . 12
2.3.3.37 〈kernel/structures/roccurve.∗〉 . 13
2.3.3.38 〈kernel/structures/rule.∗〉 . 13
2.3.3.39 〈kernel/structures/rulebasedclassification.∗〉 13
2.3.3.40 〈kernel/structures/rules.∗〉 . 13
2.3.3.41 〈kernel/structures/stringattribute.∗〉 13
2.3.3.42 〈kernel/structures/structure.∗〉 . 13
2.3.3.43 〈kernel/structures/structures.∗〉 . 13

2.3.4 〈kernel/algorithms〉 . 13
2.3.4.1 〈kernel/algorithms/algorithm.∗〉 . 13
2.3.4.2 〈kernel/algorithms/approximator.∗〉 . 14
2.3.4.3 〈kernel/algorithms/batchclassifier.∗〉 14
2.3.4.4 〈kernel/algorithms/binarysplitter.∗〉 14
2.3.4.5 〈kernel/algorithms/brorthogonalscaler.∗〉 14
2.3.4.6 〈kernel/algorithms/classifier.∗〉 . 14
2.3.4.7 〈kernel/algorithms/combinatorialcompleter.∗〉 14
2.3.4.8 〈kernel/algorithms/completer.∗〉 . 14
2.3.4.9 〈kernel/algorithms/conditionedcombinatorialcompleter.∗〉 14
2.3.4.10 〈kernel/algorithms/conditionedcompleter.∗〉 14
2.3.4.11 〈kernel/algorithms/conditionedmeancompleter.∗〉 14
2.3.4.12 〈kernel/algorithms/costinformation.∗〉 14
2.3.4.13 〈kernel/algorithms/cppruleexporter.∗〉 15
2.3.4.14 〈kernel/algorithms/cvserialexecutor.∗〉 15
2.3.4.15 〈kernel/algorithms/decisiontableexporter.∗〉 15

2

2.3.4.16 〈kernel/algorithms/decisiontableimporter.∗〉 15
2.3.4.17 〈kernel/algorithms/dictionaryexporter.∗〉 15
2.3.4.18 〈kernel/algorithms/dictionaryimporter.∗〉 15
2.3.4.19 〈kernel/algorithms/discernibilityexporter.∗〉 15
2.3.4.20 〈kernel/algorithms/discernibilityfunctionexporter.∗〉 15
2.3.4.21 〈kernel/algorithms/entropyscaler.∗〉 . 15
2.3.4.22 〈kernel/algorithms/equalfrequencyscaler.∗〉 15
2.3.4.23 〈kernel/algorithms/executor.∗〉 . 15
2.3.4.24 〈kernel/algorithms/exporter.∗〉 . 15
2.3.4.25 〈kernel/algorithms/filter.∗〉 . 15
2.3.4.26 〈kernel/algorithms/holte1rreducer.∗〉 15
2.3.4.27 〈kernel/algorithms/htmlreporter.∗〉 . 16
2.3.4.28 〈kernel/algorithms/importer.∗〉 . 16
2.3.4.29 〈kernel/algorithms/indiscernibilitygraphexporter.∗〉 16
2.3.4.30 〈kernel/algorithms/johnsonreducer.∗〉 16
2.3.4.31 〈kernel/algorithms/keyword.∗〉 . 16
2.3.4.32 〈kernel/algorithms/kidnapper.∗〉 . 16
2.3.4.33 〈kernel/algorithms/ksrulegenerator.∗〉 16
2.3.4.34 〈kernel/algorithms/loader.∗〉 . 16
2.3.4.35 〈kernel/algorithms/manualreducer.∗〉 . 16
2.3.4.36 〈kernel/algorithms/manualscaler.∗〉 . 16
2.3.4.37 〈kernel/algorithms/matlabdecisiontableexporter.∗〉 16
2.3.4.38 〈kernel/algorithms/meancompleter.∗〉 . 16
2.3.4.39 〈kernel/algorithms/mydecisiontableexporter.∗〉 16
2.3.4.40 〈kernel/algorithms/mydecisiontableimporter.∗〉 17
2.3.4.41 〈kernel/algorithms/myposdecisiontableimporter.∗〉 17
2.3.4.42 〈kernel/algorithms/myreductexporter.∗〉 17
2.3.4.43 〈kernel/algorithms/myreductfilter.∗〉 17
2.3.4.44 〈kernel/algorithms/myreductimporter.∗〉 17
2.3.4.45 〈kernel/algorithms/myreductshortener.∗〉 17
2.3.4.46 〈kernel/algorithms/myruleexporter.∗〉 17
2.3.4.47 〈kernel/algorithms/myrulefilter.∗〉 . 17
2.3.4.48 〈kernel/algorithms/naivebayesclassifier.∗〉 17
2.3.4.49 〈kernel/algorithms/naivescaler.∗〉 . 17
2.3.4.50 〈kernel/algorithms/objectselector.∗〉 17
2.3.4.51 〈kernel/algorithms/objecttrackingvoter.∗〉 18
2.3.4.52 〈kernel/algorithms/orthogonalfilescaler.∗〉 18
2.3.4.53 〈kernel/algorithms/orthogonalscaler.∗〉 18
2.3.4.54 〈kernel/algorithms/parallelexecutor.∗〉 18
2.3.4.55 〈kernel/algorithms/partitioner.∗〉 . 18
2.3.4.56 〈kernel/algorithms/prologdecisiontableexporter.∗〉 18
2.3.4.57 〈kernel/algorithms/prologreductexporter.∗〉 18
2.3.4.58 〈kernel/algorithms/prologruleexporter.∗〉 18
2.3.4.59 〈kernel/algorithms/qualityrulefilter.∗〉 18
2.3.4.60 〈kernel/algorithms/qualityrulefilterloop.∗〉 18
2.3.4.61 〈kernel/algorithms/reducer.∗〉 . 18
2.3.4.62 〈kernel/algorithms/reductcostfilter.∗〉 19
2.3.4.63 〈kernel/algorithms/reductexporter.∗〉 19
2.3.4.64 〈kernel/algorithms/reductfilter.∗〉 . 19
2.3.4.65 〈kernel/algorithms/reductimporter.∗〉 19

3

2.3.4.66 〈kernel/algorithms/reductperformancefilter.∗〉 19
2.3.4.67 〈kernel/algorithms/reductshortener.∗〉 19
2.3.4.68 〈kernel/algorithms/removalcompleter.∗〉 19
2.3.4.69 〈kernel/algorithms/reporter.∗〉 . 19
2.3.4.70 〈kernel/algorithms/rulebasedclassifier.∗〉 19
2.3.4.71 〈kernel/algorithms/ruleevaluator.∗〉 . 19
2.3.4.72 〈kernel/algorithms/ruleexporter.∗〉 . 19
2.3.4.73 〈kernel/algorithms/rulefilter.∗〉 . 20
2.3.4.74 〈kernel/algorithms/rulegenerator.∗〉 . 20
2.3.4.75 〈kernel/algorithms/saver.∗〉 . 20
2.3.4.76 〈kernel/algorithms/scaler.∗〉 . 20
2.3.4.77 〈kernel/algorithms/scriptalgorithm.∗〉 20
2.3.4.78 〈kernel/algorithms/seminaivescaler.∗〉 20
2.3.4.79 〈kernel/algorithms/serialexecutor.∗〉 20
2.3.4.80 〈kernel/algorithms/serialexecutorloop.∗〉 20
2.3.4.81 〈kernel/algorithms/splitter.∗〉 . 20
2.3.4.82 〈kernel/algorithms/standardvoter.∗〉 . 20
2.3.4.83 〈kernel/algorithms/structurecreator.∗〉 20
2.3.4.84 〈kernel/algorithms/valuesplitter.∗〉 . 20
2.3.4.85 〈kernel/algorithms/voter.∗〉 . 21

2.3.5 〈kernel/utilities〉 . 21
2.3.5.1 〈kernel/utilities/binaryoutcomecomparator.∗〉 21
2.3.5.2 〈kernel/utilities/cindexcomputer.∗〉 . 21
2.3.5.3 〈kernel/utilities/creator.∗〉 . 21
2.3.5.4 〈kernel/utilities/delimiter.∗〉 . 21
2.3.5.5 〈kernel/utilities/discerner.∗〉 . 21
2.3.5.6 〈kernel/utilities/hanleymcneilcomparator.∗〉 21
2.3.5.7 〈kernel/utilities/iokit.∗〉 . 21
2.3.5.8 〈kernel/utilities/mathkit.∗〉 . 21
2.3.5.9 〈kernel/utilities/mcnemarcomparator.∗〉 21
2.3.5.10 〈kernel/utilities/partitionkit.∗〉 . 22
2.3.5.11 〈kernel/utilities/permuter.∗〉 . 22
2.3.5.12 〈kernel/utilities/rng.∗〉 . 22
2.3.5.13 〈kernel/utilities/systemkit.∗〉 . 22

2.3.6 〈kernel/rses〉 . 22
2.3.6.1 〈kernel/rses/rsesmessage.∗〉 . 22
2.3.6.2 〈kernel/rses/rsesstop.∗〉 . 22
2.3.6.3 〈kernel/rses/library〉 . 22
2.3.6.4 〈kernel/rses/structures〉 . 22

2.3.6.4.1 〈kernel/rses/structures/rsesdecisiontable.∗〉 22
2.3.6.4.2 〈kernel/rses/structures/rsesinformationvector.∗〉 22
2.3.6.4.3 〈kernel/rses/structures/rsesreduct.∗〉 22
2.3.6.4.4 〈kernel/rses/structures/rsesreducts.∗〉 22
2.3.6.4.5 〈kernel/rses/structures/rsesrule.∗〉 23
2.3.6.4.6 〈kernel/rses/structures/rsesrules.∗〉 23

2.3.6.5 〈kernel/rses/algorithms〉 . 23
2.3.6.5.1 〈kernel/rses/algorithms/rsesclassifier.∗〉 23
2.3.6.5.2 〈kernel/rses/algorithms/rsesdecisiontableimporter.∗〉 . . . 23
2.3.6.5.3 〈kernel/rses/algorithms/rsesdynamicreducer.∗〉 23
2.3.6.5.4 〈kernel/rses/algorithms/rsesexhaustivereducer.∗〉 23
2.3.6.5.5 〈kernel/rses/algorithms/rsesgeneticreducer.∗〉 23

4

2.3.6.5.6 〈kernel/rses/algorithms/rsesjohnsonreducer.∗〉 23
2.3.6.5.7 〈kernel/rses/algorithms/rsesorthogonalfilescaler.∗〉 . . . 23
2.3.6.5.8 〈kernel/rses/algorithms/rsesorthogonalscaler.∗〉 23
2.3.6.5.9 〈kernel/rses/algorithms/rsesreducer.∗〉 23
2.3.6.5.10 〈kernel/rses/algorithms/rsesrulegenerator.∗〉 23
2.3.6.5.11 〈kernel/rses/algorithms/rsesrulelessreductfilter.∗〉 . . . 24
2.3.6.5.12 〈kernel/rses/algorithms/rsesstaticreducer.∗〉 24

2.3.7 〈kernel/sav〉 . 24
2.3.7.1 〈kernel/sav/library〉 . 24

2.3.7.1.1 〈kernel/sav/library/ea〉 . 24
2.3.7.1.2 〈kernel/sav/library/hits〉 . 24

2.3.7.2 〈kernel/sav/algorithms〉 . 24
2.3.7.2.1 〈kernel/sav/algorithms/savgeneticreducer.∗〉 24

2.4 〈common〉 . 24
2.4.1 〈common/configuration.∗〉 . 24
2.4.2 〈common/installer.∗〉 . 24
2.4.3 〈common/messagehelper.∗〉 . 25
2.4.4 〈common/objectmanager.∗〉 . 25

2.5 〈frontend〉 . 25
2.5.1 〈frontend/algorithms〉 . 25
2.5.2 〈frontend/dialogs〉 . 25

2.5.2.1 〈frontend/dialogs/structuredialogs〉 25
2.5.2.2 〈frontend/dialogs/algorithmdialogs〉 25

2.5.3 〈frontend/views〉 . 25

3 Compiler Settings 25
3.1 Directory Search Order . 25
3.2 Preprocessor Flags . 26

4 Miscellaneous 27
4.1 Exceptions . 27
4.2 Coding Standards . 27

A Algorithm Signatures 28

B Class Hierarchies 28

List of Figures

1 Referent hierarchy. 30
2 Structure hierarchy, part 1. 30
3 Structure hierarchy, part 2. 31
4 Structure hierarchy, part 3. 32
5 AnnotatedStructure hierarchy. 33
6 Algorithm hierarchy, part 1. 34
7 Algorithm hierarchy, part 2. 35
8 Classifier hierarchy. 36
9 Completer hierarchy. 36
10 Executor hierarchy. 36
11 Exporter hierarchy. 37
12 DecisionTableExporter hierarchy. 38
13 Filter hierarchy. 39
14 Importer hierarchy. 40
15 Reducer hierarchy. 41
16 RuleGenerator hierarchy. 41
17 Scaler hierarchy. 42

5

18 ScriptAlgorithm hierarchy. 43
19 Splitter hierarchy. 43
20 Miscellaneous classes. 43
21 RuleEvaluator hierarchy. 44

List of Tables

1 Algorithm type signatures. 28

1 Introduction

This document describes the ROSETTA C++ library [15], a collection of C++ classes and functions developed
as part of my doctoral dissertation [12]. In addition to providing a useful collection of algorithms and data
structures specific to discernibility-based data mining, the library also contains a lot of support routines,
infrastructure and classes relevant for machine learning in general. The ROSETTA C++ library is not tied up
to any particular hardware platform, operating system or compiler.

Miscellaneous tips and take-home points are throughout this document indented and marked with a special
symbol. An example, which incidentally is also a real tip, is the following:

TIP All files in the ROSETTA C++ library are best viewed with tab size 2. This preserves the intended
alignment and indentation in the source code, and makes the code a lot easier to read. Using a syntax-
highlighting editor is also strongly recommended.

After you have read this document, browsed the source code and otherwise acquainted yourself with the
ROSETTA C++ library, these are the steps needed to get things up and running:

1. Write a main routine that specifies what you want your program to do. This is further described in
Section 2.2.

2. Create a make file that specifies compiler settings, which files are to be compiled as part of your project,
and dependencies between these. This is further described in Section 3.

The list of files covered by this document is not exhaustive. Rather, this document only intends to give an
overview of the overall library structure and the contents of some of the most central files. The source code is
fairly well interspersed with comments, and the reader is encouraged to browse the source code for further
documentation.

TIP Generally, there is one C++ class per file, with the name of the file being the same as the name of the
class set in lowercase. For example, the file foobar.∗ would contain source code for the class FooBar.

This document does not provide detailed documentation of the inner workings of all the algorithms in the
ROSETTA system. For this, see [12, 13] and references therein, as well as the source code itself.

In Section 2, an overview of the directories and files of the ROSETTA C++ library is given. A graphical
depiction of the library’s directory structure can be obtained from this document’s table of contents. Some
comments on how to configure your compiler are given in Section 3, while miscellaneous items not discussed
elsewhere are featured in Section 4. Appendix A lists input/output type signatures for algorithmic classes.
C++ class hierarchies are presented in Appendix B, graphically depicting the inheritance relationships be-
tween classes.

6

2 Directories and Files

2.1 〈stdafx.∗〉

This file is basically an include file for standard system include files, or project specific include files that are
used frequently, but are changed infrequently. You will rarely, if ever, change this file.

Under Microsoft Visual C++, precompiled headers are typically used through this file.1

2.2 〈main.∗〉

This file you have to write yourself. The main routine is your “driver” program, specifying what your pro-
gram should do and in what capacity you use the ROSETTA C++ library.

For details and examples of main routines, see [15].

2.3 〈kernel〉

Contains the computational kernel of ROSETTA.

2.3.1 〈kernel/basic〉

Contains elementary structures, e.g., smart pointers and classes for reference counting, basic structures such
as strings, bit sets, vectors and maps, macro definitions, management of identifiers, etc.

2.3.1.1 〈kernel/basic/array.∗〉 Vector template that supports dynamic resizing. Currently, this tem-
plate can only be used for primitive types, or types that provide both an empty constructor (i.e., are “default
constructible”) and an assignment operator (i.e., are “assignable”).

TIP This class is not in use by default, but it can be used as a drop-in replacement for STL vectors, e.g., if
we want to introduce memory pooling techniques to reduce memory fragmentation. This is controlled
through 〈kernel/basic/vector.∗〉 and macros in 〈kernel/basic/macros.∗〉.

2.3.1.2 〈kernel/basic/bits.∗〉 Implements a vector of bits. Provides a compact representation of the
set {0, . . . , n− 1}, useful if n is not too high and the average set cardinality is not too low. (Otherwise, consider
using an integer vector instead.) Offers efficient methods for set union, intersection, difference, subset testing,
etc.

2.3.1.3 〈kernel/basic/handle.∗〉 Provides a “smart pointer” to objects derived from the Referent class.
The advantage of using handles instead of standard C++ pointers is that the memory management of large
objects is significantly simplified and the safety of memory operations is increased.

TIP If your compiler supports member templates in a robust fashion, see Section 3 for a description of the
MEMTMPL flag.

1Under Microsoft Visual C++ 6.0, the use of precompiled headers is controlled from the C/C++ tab in the dialog box that appears if
you select the Project/Settings... menu entry. Select the Precompiled Headers category.

7

2.3.1.4 〈kernel/basic/identifier.∗〉 Provides run-time type identification through the methods IsA
and GetId. IsA defines a transitive relation on types, while GetId returns the most specific type. Data on
known types are administered by the IdHolder class.

TIP Classes derived from Identifier should use the DECLAREIDMETHODS and IMPLEMENTIDMETHODS
macros to declare and implement the IsA and GetId methods.

2.3.1.5 〈kernel/basic/idholder.∗〉 Static class dealing with the administration of type information
used by the Identifier class, e.g., class names and class descriptions.

TIP See 〈kernel/basic/ids.∗〉 for how new types are registered, using the DECLAREID and IMPLEMEN-
TID macros.

2.3.1.6 〈kernel/basic/ids.∗〉 This is where all the type information for classes derived from Identifier
is declared. The type information is stored by the IdHolder class.

TIP It is the information entered here that defines menu texts in the ROSETTA GUI, as well as the names of
algorithms that are recognized in ROSETTA command scripts.

2.3.1.7 〈kernel/basic/interval.∗〉 Represents an interval over the set of reals. The interval may be
open or closed, and finite or infinite. Offers convenient methods for, e.g., checking whether a value is inside
an interval.

2.3.1.8 〈kernel/basic/map.∗〉 Functions as a portability layer. Currently includes the associative map
template from the STL library, wrapped in the Map macro from 〈kernel/basic/macros.∗〉.

2.3.1.9 〈kernel/basic/macros.∗〉 This is where system-wide macros are defined. Contains macros for
declaring and implementing identifiers and run-time type methods, installing prototype objects, defining
containers, casting, etc.

2.3.1.10 〈kernel/basic/memory.∗〉 If you want to overload global memory allocation/deallocation op-
erators, this is the place to do it.

2.3.1.11 〈kernel/basic/message.∗〉 The Message class relays general messages to the user, as well as
warning and error messages. Proper indentation of messages is automatically taken care of via a technique
for counting the number of currently instantiated Message objects. This class also offers a cancellation feature
for the “topmost” Message object, so that lengthy computations can be aborted by the user. Employs the static
MessageHelper class as a helper class.

2.3.1.12 〈kernel/basic/persistent.∗〉 Base class for persistent objects, i.e., objects that offer Load and
Save methods.

2.3.1.13 〈kernel/basic/referent.∗〉 The top level Referent class works in close cooperation with the
Handle template. Together, they automate reference counting and object deletion. The Referent class overloads
the new and delete operators.

8

2.3.1.14 〈kernel/basic/string.∗〉 String, a general-purpose string class, is used throughout the li-
brary. Offers a set of convenient methods for parsing and concatenating text, converting between text and
numbers, etc.

The String class is implemented using reference counting, meaning that multiple strings may share the same
physical representation. This makes string assignments very cheap.

2.3.1.15 〈kernel/basic/types.∗〉 Some fundamental types are defined here, e.g., Id and possibly also
bool in case of older compilers.

2.3.1.16 〈kernel/basic/undefined.∗〉 The static Undefined class defines a scope around “magic” con-
stants that indicate undefined values.

2.3.1.17 〈kernel/basic/vector.∗〉 Functions as a portability layer. Currently includes the vector tem-
plate from the STL library, wrapped in the Vector macro from 〈kernel/basic/macros.∗〉.

2.3.2 〈kernel/system〉

Contains wrappers for standard C system files. Functions as a portability layer.

2.3.2.1 〈kernel/system/sys〉 Contains wrappers for certain standard C system files. Functions as a
portability layer.

2.3.2.2 〈kernel/system/stl〉 Contains the STL2 implementation in use.3 Implementations of basic
containers such as vectors, maps and sets, etc., and some algorithms that operate on these via iterators.

TIP STL containers should never be included directly from this directory. Rather, portability layers like, e.g.,
〈kernel/basic/vector.∗〉 should be included instead.

2.3.3 〈kernel/structures〉

Contains code for higher-level structures such as decision tables, collections of reducts and rules, discernibil-
ity matrices and functions, ROC curves, etc.

2.3.3.1 〈kernel/structures/annotatedstructure.∗〉 Structural objects that have an Annotation object
associated with them inherit from AnnotatedStructure. Typically, only objects that a user will interact with
directly in a user interface need to be annotated.

2.3.3.2 〈kernel/structures/annotation.∗〉 Holds annotation data for annotated structures. An an-
notation holds the object’s name, physical location, a history log and a general comment field.

2.3.3.3 〈kernel/structures/approximation.∗〉 Represents a rough set approximation of a set of ob-
jects. Offers methods for accessing the lower and upper approximations, the boundary and outside regions,
etc.

2Standard template library.
3Currently STLport [16], an adaptation of Silicon Graphics’ STL where great care has been taken to make the templates as portable

and robust as possible against compiler bugs and platform quirks.

9

2.3.3.4 〈kernel/structures/attribute.∗〉 Base class for Attribute objects, used by the Dictionary class.
Functions as a map between coded integer values and actual textual or numerical values.

2.3.3.5 〈kernel/structures/batchclassification.∗〉 Summarizes the result of having classified a
set of objects in a decision table. Holds a ConfusionMatrix object and possibly ROC data, too. Output by
algorithms in the BatchClassifier family.

2.3.3.6 〈kernel/structures/binaryoutcomecurve.∗〉 Base class for curves generated from binary out-
come classification data.

2.3.3.7 〈kernel/structures/booleanfunction.∗〉 Base class for Boolean POS or SOP functions. Offers
methods for simplification of such functions, i.e., removal of duplicates and absorption.

Internally, the BooleanFunction class is implemented as a vector of Bits pointers, with one Bits “component”
per sum or product. Each component” can have a weight associated with it. Such weights may reflect, e.g.,
a measure of importance or simply an occurrence count. Since Bits pointers are used, a “component’ may
be shared between a BooleanFunction object and, e.g., a DiscernibilityMatrix object. Eliminating duplication of
data also speeds up certain operations.

2.3.3.8 〈kernel/structures/booleanposfunction.∗〉 Specialization of BooleanFunction for POS func-
tions. Each function “component” is thus interpreted as a Boolean sum.

2.3.3.9 〈kernel/structures/booleansopfunction.∗〉 Specialization of BooleanFunction for SOP func-
tions. Each function “component” is thus interpreted as a Boolean product.

2.3.3.10 〈kernel/structures/calibrationcurve.∗〉 Represents a calibration curve, constructed from
a number of pairs generated from a binary outcome classification procedure. Also offers methods for com-
puting, e.g., the Brier score and its covariance decomposition [1].

2.3.3.11 〈kernel/structures/classification.∗〉 Summarizes the result of classifying a single object
in a decision table. A classification result can be seen as a list of possible decision values along with some
extra information, e.g., a measure of evidence or certainty associated with each suggested decision value.
Output by algorithms in the Classifier family.

2.3.3.12 〈kernel/structures/confusionmatrix.∗〉 Represents a square matrix with integer entries.
Used to summarize the results of a batch classification procedure.

2.3.3.13 〈kernel/structures/decisiontable.∗〉 The DecisionTable class represents a flat data table.
Some of the rows or columns can be “masked”, i.e., made invisible to DecisionTable clients. Columns can
be marked as having condition or decision status.

Internally, all table entries are integers. The conversion between these coded values and the actual values as
perceived by the user is taken care of by an associated Dictionary object.

TIP For specialized applications with very large tables where all table entries are either 0 or 1, DecisionTable
could be subclassed to use a vector of Bits as its internal representation. For large tables, this could save
significant amounts of memory.4

4On most current platforms, an int occupies four bytes. Representing a row with a Bits object instead of a vector of integers would
thus result in a memory savings factor of 32.

10

2.3.3.14 〈kernel/structures/decisiontables.∗〉 Represents a collection of DecisionTable objects. Rarely
in use.

2.3.3.15 〈kernel/structures/dictionary.∗〉 The Dictionary class converts between real-world values
and the coded integer values used as the internal representation. Works in cooperation with DecisionTable
objects. A Dictionary object is composed of a set of Attribute objects.

2.3.3.16 〈kernel/structures/discernibilityfunction.∗〉 Represents a Boolean POS function con-
structed from a decision table.

2.3.3.17 〈kernel/structures/discernibilitymatrix.∗〉 Represents a discernibility matrix, where each
entry is a pointer to a Bits object. Empty entries are represented by NULL pointers.

A client may perceive this as a full matrix with dimensionality equal to the cardinality of the universe of ob-
jects. Internally, however, less than half the matrix is stored. We only need one representative per equivalence
class, and we additionally exploit that the matrix is symmetric and has an empty diagonal. The mapping be-
tween the full “logical” view of the matrix and the reduced internal representation is done in O(1) time.

2.3.3.18 〈kernel/structures/equivalenceclass.∗〉 Represents a single equivalence class, viewed as
a set of object indices into some ancestral DecisionTable object. Additionally offers some query methods.

2.3.3.19 〈kernel/structures/equivalenceclasses.∗〉 Represents a collection of EquivalenceClass ob-
jects. Employed by, e.g., the Approximation and Partitioner classes.

2.3.3.20 〈kernel/structures/floatattribute.∗〉 Specialization of Attribute for attributes where the
values are floating point numbers. Maps between integers and floats by multiplying by a factor of 10±n,
where n is a scaling exponent.

2.3.3.21 〈kernel/structures/generalizeddecision.∗〉 Represents a generalized decision value, i.e.,
a collection of decision values. Their corresponding cardinalities are also stored, thus enabling computation
of probabilities.

2.3.3.22 〈kernel/structures/graph.∗〉 Represents a directed graph with vertices taking labels from a
finite domain of integers, not necessarily {0, . . . , n − 1}. Implemented by an adjacency matrix, best for small
or dense graphs. Vertices and edges are typically specified in a file, and a small language for this purpose is
supported. Various graph algorithms such as Dijkstra’s, Floyd’s and Warshall’s algorithms are available.

2.3.3.23 〈kernel/structures/history.∗〉 Represents a history log. Used by the Annotation class.

2.3.3.24 〈kernel/structures/historyentry.∗〉 Represents an entry in a history log. Records who did
what when. Used by the History class.

2.3.3.25 〈kernel/structures/indiscernibilitygraph.∗〉 Specialization of Graph for indiscernibility
graphs. Offers methods to create such graphs from Decisiontable or DiscernibilityMatrix objects. Provides
support for IDGs5 via the Discerner class.

5Indiscernibility definition graphs. See [12] for details.

11

2.3.3.26 〈kernel/structures/informationvector.∗〉 Represents a vector of attribute/value pairs for
an object in a decision table.

2.3.3.27 〈kernel/structures/integerattribute.∗〉 Specialization of Attribute for attributes where the
values are integers. Performs an identity mapping.

2.3.3.28 〈kernel/structures/ksdecisiontable.∗〉 A simple specialization of DecisionTable that can be
used if the system is compiled without the RSES library. Functions as a drop-in replacement for the corre-
sponding RSES wrapper.

2.3.3.29 〈kernel/structures/ksinformationvector.∗〉 A simple specialization of InformationVector that
can be used if the system is compiled without the RSES library. Functions as a drop-in replacement for the
corresponding RSES wrapper.

2.3.3.30 〈kernel/structures/ksreduct.∗〉 A simple specialization of Reduct that can be used if the
system is compiled without the RSES library. Functions as a drop-in replacement for the corresponding RSES
wrapper.

2.3.3.31 〈kernel/structures/ksrule.∗〉 A simple specialization of Rule that can be used if the sys-
tem is compiled without the RSES library. Functions as a drop-in replacement for the corresponding RSES
wrapper.

2.3.3.32 〈kernel/structures/parentstructure.∗〉 Represents a structural object that can have other
structural objects derived from it by means of some algorithmic object. The ParentStructure class provides a
list of pointers to child Structure objects.

Note the difference between this class and the Structures class. This class functions as a base class for classes
that have children pointers. The Structures class functions as a base class for classes that are conceived as sets
of structures.

2.3.3.33 〈kernel/structures/project.∗〉 Represents a top level project, consisting of a tree of Struc-
ture and Algorithm objects. Offers methods to extract all objects of certain types from the tree.

2.3.3.34 〈kernel/structures/projectmanager.∗〉 Static class representing the pool of all Project ob-
jects that currently exist. The sole reason for having this class is so that the FindParent method at the Structure
level works.6 This enables us to track back to ancestral structures.

TIP The static ProjectManager class could perhaps be made transparent or “invisible’ to the library user by
inserting proper calls in the constructors and destructor of the Project class. Currently, however, this has
to be done manually.

2.3.3.35 〈kernel/structures/reduct.∗〉 Base class for objects representing a reduct. A Reduct object
can be viewed as a collection of attribute indices into a DecisionTable object.

2.3.3.36 〈kernel/structures/reducts.∗〉 Specialization of Structures for a collection of Reduct objects.
6Remember that the Handle mechanism only works as intended if there are no referential cycles. Since the ParentStructure class has

pointers to its children, having a pointer back to its parent would introduce such cycles. The static ProjectManager class enables us to
implement FindParent through a massive forward search instead. Unless the projects are very large, this works reasonably well.

12

2.3.3.37 〈kernel/structures/roccurve.∗〉 Represents an ROC curve, constructed from a number of
pairs generated from a binary outcome classification procedure. The area under the curve can either be
computed using trapezoidal integration or via the c-index.

2.3.3.38 〈kernel/structures/rule.∗〉 Base class for rules. The antecedent of a rule is a conjunction of
descriptors, while the rule’s consequent is a disjunction (or more precisely, a set known as the generalized
decision value). If the consequent is missing then the rule is not strictly a rule, but is then often denoted a
“pattern” or “template”.

TIP The class design is currently not as clean as it should be, mainly due to historical reasons and to make
integration with legacy code simpler. See 〈kernel/structures/rule.∗〉 for details.

The attribute indices and values in a descriptor use the same encoding as the DecisionTable object from which
the Rule object stems. For proper formatting, therefore, access to the DecisionTable object (and its associated
Dictionary object) is required.

2.3.3.39 〈kernel/structures/rulebasedclassification.∗〉 Specialization of Classification for results
obtained from applying algorithms in the RuleBasedClassifier family.

2.3.3.40 〈kernel/structures/rules.∗〉 Specialization of Structures for a collection of Rule objects.

2.3.3.41 〈kernel/structures/stringattribute.∗〉 Specialization of Attribute for attributes where the
values are general strings. Translates between integers and strings by looking up stuff in associative maps.

2.3.3.42 〈kernel/structures/structure.∗〉 Base class for structural objects, i.e., objects that represent
some kind of data structure. For reasons of interface uniformity, the Structure class offers a wide variety
of virtual methods for, e.g., child and member structure management. (The actual implementation of these
methods are found in subclasses of Structure. See Appendix B for class diagrams.) The Structure class also
offers parent navigation through the family of FindParent methods.7

2.3.3.43 〈kernel/structures/structures.∗〉 Represents a set of Structure objects. This class is usually
subclassed to cater for more specialized collections of structural objects.

2.3.4 〈kernel/algorithms〉

Contains code for higher-level algorithms such as algorithms for discretization, computation of reducts, fil-
tering of reducts and rules, voting, import/export routines, etc.

2.3.4.1 〈kernel/algorithms/algorithm.∗〉 Base class for algorithmic objects, i.e., objects designed to
alter, create or process data structures. An Algorithm object takes a Structure object as input to its Apply
method, and returns a Structure object if the application went well. The output structure may be identical to
the input structure (modified or not), or a new structure of some type.

A general way of passing simple algorithm parameters is provided through the SetParameter method. The
IsApplicable method identifies the supported input type.8

7See the description of ProjectManager for details.
8See Appendix A for details on this.

13

2.3.4.2 〈kernel/algorithms/approximator.∗〉 An Approximator algorithm takes as input a DecisionTable
object, computes a rough set approximation, and returns an Approximation object.

2.3.4.3 〈kernel/algorithms/batchclassifier.∗〉 A BatchClassifier algorithm takes as input a Deci-
sionTable object, attempts to classify all objects in the table using an algorithm in the Classifier family, and
returns a BatchClassification object. ROC curves, calibration curves and log files can also be generated.

2.3.4.4 〈kernel/algorithms/binarysplitter.∗〉 Vertically splits a DecisionTable object in two parts,
where the objects are randomly sampled. The relative sizes of the two parts can be specified. The two
resulting DecisionTable objects are either attached to the input DecisionTable object as children, or returned in
a compound DecisionTables objects.

2.3.4.5 〈kernel/algorithms/brorthogonalscaler.∗〉 A straightforward but not terribly efficient im-
plementation of the supervised and multivariate discretization algorithm of Nguyen and Skowron [11]. Con-
structs a Boolean function9 that expresses the discernibility present in the input DecisionTable object, and
computes a prime implicant of this function. Employs the NaiveScaler and JohnsonReducer algorithms as aids.

2.3.4.6 〈kernel/algorithms/classifier.∗〉 Base class for algorithms that take as input an Information-
Vector object and return a Classification object, constructed using some classification scheme.

2.3.4.7 〈kernel/algorithms/combinatorialcompleter.∗〉 Specialization of Completer, where the in-
put DecisonTable is completed through combinatorial expansion. Each row with missing values is expanded
into two or more rows, so that all combinations of possible values for the empty entries are covered.

2.3.4.8 〈kernel/algorithms/completer.∗〉 Base class for table completion algorithms, i.e., algorithms
that somehow produce a DecisionTable object with no missing values when fed with a DecisionTable object with
missing values.

TIP Currently, completion algorithms do not save details of the completion process to file. They should,
though, if relevant, since we could then later apply the same substitution values to another table.

2.3.4.9 〈kernel/algorithms/conditionedcombinatorialcompleter.∗〉 Specialization of Combinatori-
alCompleter, where the set of possible values for an object is conditioned to the decision class to which the
object belongs.

2.3.4.10 〈kernel/algorithms/conditionedcompleter.∗〉 Base class for Completer algorithms that con-
dition the completion values on the decision classes. Splits the input table into one table per decision class,
does an unconditional completion on each of these, and combines them back into a single output table.

2.3.4.11 〈kernel/algorithms/conditionedmeancompleter.∗〉 Specialization of MeanCompleter, where
the computed mean/mode values for an object are conditioned to the decision class to which the object
belongs.

2.3.4.12 〈kernel/algorithms/costinformation.∗〉 Helper class that keeps information about attribute
costs. Cost information is loaded from file. Support for shared costs is not yet implemented.

9This is the bottleneck in the current implementation.

14

2.3.4.13 〈kernel/algorithms/cppruleexporter.∗〉 Exports a Rules object to C++ code that realizes a
classifier. Conflict resolution among firing Rule objects is done via standard voting.

2.3.4.14 〈kernel/algorithms/cvserialexecutor.∗〉 Specialization of SerialExecutorLoop where the sam-
pling scheme is overloaded to implement n-fold cross-validation.

2.3.4.15 〈kernel/algorithms/decisiontableexporter.∗〉 Base class for algorithms that export some
aspect of a DecisionTable object to some file format.

2.3.4.16 〈kernel/algorithms/decisiontableimporter.∗〉 Base class for algorithms that import Deci-
sionTable objects from some alien format. The input DecisionTable is returned, filled with the contents of the
file.

2.3.4.17 〈kernel/algorithms/dictionaryexporter.∗〉 Exports a Dictionary object to a format that can
be edited and subsequently read back into the system using the DictionaryImporter algorithm.

2.3.4.18 〈kernel/algorithms/dictionaryimporter.∗〉 Complements the DictionaryExporter algorithm,
described above.

2.3.4.19 〈kernel/algorithms/discernibilityexporter.∗〉 Base class for algorithms that export some
discernibility aspect of DecisionTable objects. Provides support for IDGs. Optionally, a masked attribute can
be used to name the exported data.

2.3.4.20 〈kernel/algorithms/discernibilityfunctionexporter.∗〉 Specialization of DiscernibilityEx-
porter. Computes and exports one or more discernibility functions, simplified or not.

2.3.4.21 〈kernel/algorithms/entropyscaler.∗〉 Implements the discretization algorithm of Dougherty
et al. [4]. Recursive algorithm based on entropy considerations.

2.3.4.22 〈kernel/algorithms/equalfrequencyscaler.∗〉 Implements equal frequency discretization,
a simple unsupervised and univariate discretization algorithm. Fixing a number n and examining the his-
togram of each attribute, n− 1 cuts are determined so that approximately the same number of objects fall into
each of the n bins.

2.3.4.23 〈kernel/algorithms/executor.∗〉 Base class for algorithms that execute command scripts.

2.3.4.24 〈kernel/algorithms/exporter.∗〉 Base class for algorithms that export some aspect of struc-
tural objects in some format. Most, if not all, algorithms in the Exporter family return the input structure
unmodified. That is, they are simple pass-through operations where the exporting is a side-effect.

2.3.4.25 〈kernel/algorithms/filter.∗〉 Base class for algorithms that remove individual members
from collections on the basis of some filtering criterion.

2.3.4.26 〈kernel/algorithms/holte1rreducer.∗〉 Returns all singleton attribute sets, inspired by the
paper of Holte [8]. 1R rules are attached to the returned Reducts object as a child Rules object.

15

2.3.4.27 〈kernel/algorithms/htmlreporter.∗〉 Specialization of Reporter supporting HTML format.
The exported report contains hyperlinks.

2.3.4.28 〈kernel/algorithms/importer.∗〉 Base class for algorithms that import structural objects from
some medium. Typically, the input Structure is emptied, filled and returned.

2.3.4.29 〈kernel/algorithms/indiscernibilitygraphexporter.∗〉 Specialization of DiscernibilityEx-
porter. Exports a graph that can be used to visualize the indiscernibility relation. The graph is exported in a
format recognized by the GraphViz suite of layout tools [5].

2.3.4.30 〈kernel/algorithms/johnsonreducer.∗〉 Specialization of Reducer, implementing a variation
of the set covering heuristic of Johnson [9]. The greedy algorithm is reasonably fast, but computes only a
single prime implicant of a discernibility function. The algorithm has a bias towards finding a solution of
minimal length. Approximate solutions are supported.

2.3.4.31 〈kernel/algorithms/keyword.∗〉 The static Keyword class defines a scope around “magic”
strings that are used in the Algorithm methods SetParameter and GetParameters.

2.3.4.32 〈kernel/algorithms/kidnapper.∗〉 Specialization of ScriptAlgorithm. Returns child number i
attached to the input structure.

2.3.4.33 〈kernel/algorithms/ksrulegenerator.∗〉 A simple specialization of RuleGenerator that can
be used if the system is compiled without the RSES library. Functions as a drop-in replacement for the
corresponding RSES wrapper.

2.3.4.34 〈kernel/algorithms/loader.∗〉 Specialization of ScriptAlgorithm. Invokes the input struc-
ture’s Load method.

2.3.4.35 〈kernel/algorithms/manualreducer.∗〉 Specialization of Reducer that enables one to manu-
ally create a Reducts objects with a single Reduct member object.

2.3.4.36 〈kernel/algorithms/manualscaler.∗〉 Specialization of Scaler that enables one to manually
discretize an attribute. Relevant to use if, e.g., suitable domain knowledge exists.

2.3.4.37 〈kernel/algorithms/matlabdecisiontableexporter.∗〉 Exports the contents of the input De-
cisionTable object to an ASCII file in a format recognized by MATLAB [10]. Enables tabular data to be visual-
ized outside of ROSETTA.

2.3.4.38 〈kernel/algorithms/meancompleter.∗〉 Specialization of Completer where a missing value for
an attribute is replaced by the mean value of all observed values for that attribute. If the attribute is non-
numeric, the mode10 is employed instead of the mean.

2.3.4.39 〈kernel/algorithms/mydecisiontableexporter.∗〉 Exports the contents of the input Deci-
sionTable object to an ASCII file in a plain and simple format. The first two lines of the exported file contain
attribute names and types, while each remaining line holds data for an object.

10The most frequently occurring value.

16

2.3.4.40 〈kernel/algorithms/mydecisiontableimporter.∗〉 Enables tabular data exported by MyDe-
cisionTableExporter to be read back into ROSETTA. Supports a simple file format that can be prepared outside
of ROSETTA for easy import of alien data.

2.3.4.41 〈kernel/algorithms/myposdecisiontableimporter.∗〉 Fills the input DecisionTable object with
0/1 entries, constructed on the basis of a definition of a Boolean POS function. See [12] for details.

TIP This enables ROSETTA to be used for more general Boolean reasoning purposes. By providing a gate-
way from function definitions to decision tables, ROSETTA can be used to compute prime implicants
of any user-defined Boolean POS function. See also the description of the Reducer class.

The current implementation loads the full function definition before it is parsed. This approach does not scale
up well to very large functions.

2.3.4.42 〈kernel/algorithms/myreductexporter.∗〉 Exports the contents of a Reducts object to an ASCII
file in a plain and simple format.

2.3.4.43 〈kernel/algorithms/myreductfilter.∗〉 Specialization of ReductFilter, where individual Reduct
member objects are filtered away from a Reducts object on the basis of such criteria as, e.g., length and support.

2.3.4.44 〈kernel/algorithms/myreductimporter.∗〉 Enables data exported by MyReductExporter to be
read back into ROSETTA. Needs access to the DecisionTable object from which the reducts stem.

2.3.4.45 〈kernel/algorithms/myreductshortener.∗〉 Shortens each Reduct object in a Reducts object
according to various criteria. By shortening is meant removing one or more attribute indices.

2.3.4.46 〈kernel/algorithms/myruleexporter.∗〉 Exports the contents of a Rules object to an ASCII
file in a plain and simple format.

2.3.4.47 〈kernel/algorithms/myrulefilter.∗〉 Specialization of RuleFilter, where individual Rule mem-
ber objects are filtered away from a Rules object on the basis of criteria such as, e.g., accuracy, coverage, length,
and dominating decision value.

2.3.4.48 〈kernel/algorithms/naivebayesclassifier.∗〉 Specialization of Classifier that implements a
naive Bayes classifier. Conditional and prior probabilities are estimated from a “master” DecisionTable object.

2.3.4.49 〈kernel/algorithms/naivescaler.∗〉 Specialization of OrthogonalScaler. A univariate, super-
vised discretization algorithm where a cut is added if the objects neighboring the cut belong to different
decision classes.11 Usually generates far too many cuts than needed. Used by, e.g., the JohnsonReducer class to
generate all candidate cuts.

2.3.4.50 〈kernel/algorithms/objectselector.∗〉 Helper class useful in situations where a subset of
objects have to be selected. In use by, e.g., the Reducer class.

11More or less. See FindCuts in 〈kernel/algorithms/naivescaler.∗〉 for details.

17

2.3.4.51 〈kernel/algorithms/objecttrackingvoter.∗〉 Specialization of Voter. Tracks back to all ob-
jects that are members of the support set of a firing rule, and examines the distribution of decision vales
among these objects.

2.3.4.52 〈kernel/algorithms/orthogonalfilescaler.∗〉 Specialization of OrthogonalScaler. Reads the
cuts from a file instead of computing them.

2.3.4.53 〈kernel/algorithms/orthogonalscaler.∗〉 Base class for discretization algorithms that com-
pute cuts. A cut can be perceived as a hyperplane orthogonal to the attribute axes, hence the name Orthogo-
nalScaler. Symbolic attributes can be masked away before invoking the discretization process.

TIP If you want to write a univariate discretization algorithm, a lot of the functionality you’ll need is already
implemented at the OrthogonalScaler level. In the simplest case, all you’ll need to do is to overload
the FindCuts method. For more advanced discretization algorithms, e.g., multivariate algorithms, you
might need to overload the Discretize method.

2.3.4.54 〈kernel/algorithms/parallelexecutor.∗〉 Specialization of Executor that, conceptually, ex-
ecutes different commands or command scripts in parallel. That is, the same input Structure is fed into all
commands listed in the script.

2.3.4.55 〈kernel/algorithms/partitioner.∗〉 Partitions a decision table, i.e., computes and returns
the sets of objects that are observationally equivalent wrt. a specified set of attributes. Can be seen as a
wrapper around the functionality in the PartitionKit class.

2.3.4.56 〈kernel/algorithms/prologdecisiontableexporter.∗〉 Exports a DecisionTable object as a col-
lection of Prolog facts.

2.3.4.57 〈kernel/algorithms/prologreductexporter.∗〉 Exports a Reducts object as a collection of Pro-
log facts.

2.3.4.58 〈kernel/algorithms/prologruleexporter.∗〉 Exports a Rules object as a collection of Prolog
rules. The head of each exported rule contains various numerical information associated with the rule. In-
consistent rules are split into several individually consistent rules.

2.3.4.59 〈kernel/algorithms/qualityrulefilter.∗〉 Specialization of RuleFilter. Enables members of
a Rules object to be filtered away according to the measures of rule quality listed by Bruha [3]. The quality
measures are implemented by the classes in the RuleEvaluator family.

2.3.4.60 〈kernel/algorithms/qualityrulefilterloop.∗〉 Couples QualityRuleFilter together with a
Voter algorithm and ROC analysis. Enables the classificatory performance of the set of rules to be monitored
as a function of the quality threshold.

2.3.4.61 〈kernel/algorithms/reducer.∗〉 Base class for algorithms that compute reducts of informa-
tion systems, modulo the decision attribute or not. Reducts may be computed wrt. the full system or relative
to selected objects. Support is provided for IDGs and boundary region thinning. The returned Reducts object
may or may not have a child Rules object attached to it.

18

TIP Since a reduct is a prime implicant of a suitably constructed Boolean POS function, we can employ
algorithms in the Reducer family for more general Boolean reasoning purposes. To compute the prime
implicants of a problem-specific POS function, invoke the overloaded ComputePrimeImplicants method.

TIP Algorithms in the Reducer family expect that the input DecisionTable object is already discretized, if
needed. Some newly proposed algorithms for computing reducts and rules, however, do the discretiza-
tion and the reduction during the same pass. Such algorithms could be incorporated by creating a new
algorithm family, e.g., ScalingReducer, which return the discretized version of the input DecisionTable
object, but with a Reducts object attached as a child.

2.3.4.62 〈kernel/algorithms/reductcostfilter.∗〉 Specialization of ReductFilter, where individual
reducts are filtered away if they “cost” too much. Cost evaluation is done by the CostInformation helper
class.

2.3.4.63 〈kernel/algorithms/reductexporter.∗〉 Base class for algorithms that export Reducts objects
to some alien format.

2.3.4.64 〈kernel/algorithms/reductfilter.∗〉 Specialization of Filter that operates on Reducts ob-
jects.

2.3.4.65 〈kernel/algorithms/reductimporter.∗〉 Base class for algorithms that import sets of reducts.

2.3.4.66 〈kernel/algorithms/reductperformancefilter.∗〉 Specialization of ReductFilter. Each mem-
ber Reduct object is evaluated according to the classificatory performance of the rules generated from that
Reduct object alone.

2.3.4.67 〈kernel/algorithms/reductshortener.∗〉 Base class for algorithms that remove attributes
from Reduct objects according to some criterion.

2.3.4.68 〈kernel/algorithms/removalcompleter.∗〉 Specialization of Completer. Removes all rows that
contain one or more missing values.

2.3.4.69 〈kernel/algorithms/reporter.∗〉 Base class for algorithms that generate a report or log of
the current experiment. Typically, annotations and other information belonging to the input Structure object
are saved, and the same is then done recursively on the input object’s children.

2.3.4.70 〈kernel/algorithms/rulebasedclassifier.∗〉 Specialization of Classifier. For algorithms that
employ a Rules object together with some conflict resolution scheme to construct and return a RuleBasedClas-
sification object.

2.3.4.71 〈kernel/algorithms/ruleevaluator.∗〉 The RuleEvaluator family implements rule quality mea-
sures [3], i.e., they evaluate how “good” a Rule object is in some sense. Used by, e.g., the QualityRuleFilter
algorithm.

2.3.4.72 〈kernel/algorithms/ruleexporter.∗〉 Base class for algorithms that export a Rules object to
some alien format.

19

2.3.4.73 〈kernel/algorithms/rulefilter.∗〉 Abstract subclass of Filter, specialized for removing Rule
objects from a Rules object according to some filtering criterion.

2.3.4.74 〈kernel/algorithms/rulegenerator.∗〉 Base class for algorithms that produce a Rules object
from a Reducts object. Typically, if the input Reducts object already has a Rules object as a child, this is re-
turned. Otherwise, the Rules object is generated by laying the individual Reduct objects over their ancestral
DecisionTable object and reading off the corresponding table entries.

2.3.4.75 〈kernel/algorithms/saver.∗〉 Specialization of ScriptAlgorithm. Invokes the input structure’s
Save method.

2.3.4.76 〈kernel/algorithms/scaler.∗〉 Base class for algorithms that perform discretization, i.e., that
somehow recode the attributes in a DecisionTable object to provide a coarser view of the world. The name
Scaler is kept for historical reasons.

2.3.4.77 〈kernel/algorithms/scriptalgorithm.∗〉 Base class for algorithms that are only intended
used in command scripts. Command scripts are executed by algorithms in the Executor family.

2.3.4.78 〈kernel/algorithms/seminaivescaler.∗〉 Specialization of NaiveScaler which produces slightly
fewer cuts. The sets of dominating decisions around a candidate cut are examined, and the cut is omitted if
these sets define an inclusion.

2.3.4.79 〈kernel/algorithms/serialexecutor.∗〉 Specialization of Executor where the command script
is interpreted as defining a pipeline, i.e., where data flows from one algorithm to the next.

2.3.4.80 〈kernel/algorithms/serialexecutorloop.∗〉 Specialization of SerialExecutor where the com-
mand script is interpreted as defining both a training pipeline and a testing pipeline, that are to be executed
multiple times on different resampled versions of the input DecisionTable object.

TIP The resampling scheme can be overloaded by subclasses of SerialExecutorLoop to provide for, e.g., cross-
validation or bootstrapping.

2.3.4.81 〈kernel/algorithms/splitter.∗〉 Base class for algorithms that take as input a DecisionTable
object, and splits this horizontally into two or more subtables according to some splitting criterion.

2.3.4.82 〈kernel/algorithms/standardvoter.∗〉 Implements a rule-based classification scheme where
conflict resolution among firing rules is resolved through traditional voting. A firing rule gets to cast a cer-
tain number of votes in favour of the decision values it indicates. All votes are tallied and their relative
percentages returned.

2.3.4.83 〈kernel/algorithms/structurecreator.∗〉 Specialization of ScriptAlgorithm. Ignores the in-
put Structure, and outputs the result of a call to the static Creator helper class.

2.3.4.84 〈kernel/algorithms/valuesplitter.∗〉 Specialization of Splitter. All objects in each resulting
subtable will have the same value for some specified attribute.

20

2.3.4.85 〈kernel/algorithms/voter.∗〉 Classifies a possibly incomplete InformationVector object accord-
ing to some rule-based voting scheme.

2.3.5 〈kernel/utilities〉

Contains code for various utilities, such as random number generators, tools for statistical hypothesis testing,
computation of partitions, common mathematical operations, etc.

2.3.5.1 〈kernel/utilities/binaryoutcomecomparator.∗〉 Base class for doing statistical hypothesis
testing on classifiers with binary outcomes.

2.3.5.2 〈kernel/utilities/cindexcomputer.∗〉 Utility class that computes the area under the ROC
curve and its standard error non-parametrically [6]. Used by, e.g., the ROCCurve class.

2.3.5.3 〈kernel/utilities/creator.∗〉 Static kit for dynamic creation of structural objects. Provides
support for creating objects by loading them from disk, too.

TIP Never use new to create structural objects, use the static Creator class instead.12 The Creator class enables
us to create objects while working on the level of abstract base classes.

The Creator class works by scanning the static ObjectManager class for installed prototype objects, and then
cloning the most closely matching13 structural object by invoking its Duplicate method.

2.3.5.4 〈kernel/utilities/delimiter.∗〉 Scope around delimiter constants. Used by, e.g., the IOKit
class.

2.3.5.5 〈kernel/utilities/discerner.∗〉 Helper class for algorithms that need a discernibility predi-
cate on a per attribute basis. The Discerner class provides support for IDGs.

2.3.5.6 〈kernel/utilities/hanleymcneilcomparator.∗〉 Specialization of BinaryOutcomeComparator im-
plementing Hanley-McNeil’s test [7]. Used to compare areas under ROC curves derived from the same set of
cases.

2.3.5.7 〈kernel/utilities/iokit.∗〉 Provides a set of static methods for I/O related functions, e.g.,
loading a line from a stream while ignoring comment lines, or saving a quoted string.

2.3.5.8 〈kernel/utilities/mathkit.∗〉 Provides a scope around miscellaneous mathematical and sta-
tistical methods, e.g., for computing histograms, mean and median values, variances, correlations, linear
regressions, etc.

2.3.5.9 〈kernel/utilities/mcnemarcomparator.∗〉 Specialization of BinaryOutcomeComparator imple-
menting McNemar’s test. Used to compare classification accuracies for classifiers applied to the same set of
cases.

12Never use delete either, use the Handle mechanism instead.
13Using the GetId and IsA methods inherited from Identifier.

21

2.3.5.10 〈kernel/utilities/partitionkit.∗〉 Utility functions for computing the equivalence classes
in a decision table wrt. a given set of attributes. Implemented by a simple but efficient sort-and-scan proce-
dure.

2.3.5.11 〈kernel/utilities/permuter.∗〉 Helper class useful in situations where we need to create a
permutation of the index set {0, . . . , n − 1}, such that the permutation is sorted according to a given vector
of sorting keys.

2.3.5.12 〈kernel/utilities/rng.∗〉 Implements a good random number generator for uniform distri-
butions, lifted from Press et al. [14]. Both reals and integers can be drawn.

2.3.5.13 〈kernel/utilities/systemkit.∗〉 Provides various helper functions for obtaining timestamps,
user names, etc.

2.3.6 〈kernel/rses〉

Contains code relevant to the RSES library.

2.3.6.1 〈kernel/rses/rsesmessage.∗〉 Implements a global method used by the RSES library.14

TIP The RSES library assumes that the global methods listed below are available. The current implementa-
tion of these methods use the facilities provided by the Message class.

void Message(char *, char *)
int stop(int, ...)

2.3.6.2 〈kernel/rses/rsesstop.∗〉 Implements a global method used by the RSES library.15

2.3.6.3 〈kernel/rses/library〉 Contains legacy code from the RSES library.16

2.3.6.4 〈kernel/rses/structures〉 Contains encapsulating wrappers for some of the structural objects
from the RSES library.

2.3.6.4.1 〈kernel/rses/structures/rsesdecisiontable.∗〉 Provides a wrapper around the RSES class
TDTable.

2.3.6.4.2 〈kernel/rses/structures/rsesinformationvector.∗〉 Provides a wrapper around the RSES
class TDObject.

2.3.6.4.3 〈kernel/rses/structures/rsesreduct.∗〉 Provides a wrapper around the RSES class TReduct.

2.3.6.4.4 〈kernel/rses/structures/rsesreducts.∗〉 Provides a wrapper around the RSES class TRe-
dRulMem. A lot of administration goes into ensuring consistency between the embedded TReduct objects and
the encapsulating RSESReduct wrappers.

14See 〈kernel/rses/rsesmessage.∗〉 for details.
15See 〈kernel/rses/rsesstop.∗〉 for details.
16Developed at the Group of Logic, University of Warsaw, Poland.

22

2.3.6.4.5 〈kernel/rses/structures/rsesrule.∗〉 Provides a wrapper around the RSES class TRule.
Also keeps a pointer to the RSES TReduct object to which the TRule object was derived.

2.3.6.4.6 〈kernel/rses/structures/rsesrules.∗〉 RSES bundles all reducts and rules into the com-
pound RSES class TRedRulMem. To still be able to achieve a logical separation between sets of reducts and
sets of rules, the RSESRules wrapper keeps a pointer to an RSES TRedRulMem object and does a lot of house-
keeping to ensure consistency.

2.3.6.5 〈kernel/rses/algorithms〉 Contains encapsulating wrappers for some of the algorithms from
the RSES library.

2.3.6.5.1 〈kernel/rses/algorithms/rsesclassifier.∗〉 Provides a wrapper around the RSES class
TDecGenerator.

2.3.6.5.2 〈kernel/rses/algorithms/rsesdecisiontableimporter.∗〉 Provides a wrapper around the
RSES TDictionary::TDimport method.

2.3.6.5.3 〈kernel/rses/algorithms/rsesdynamicreducer.∗〉 Provides a wrapper around the meth-
ods from the RSES library that deal with computing dynamic reducts as proposed by Bazan et al. [2]. The
RSESStaticReducer object given as a parameter basically does all the work. The RSESDynamicReducer invokes
suitable RSES methods prior to this.

2.3.6.5.4 〈kernel/rses/algorithms/rsesexhaustivereducer.∗〉 Specialization of RSESStaticReducer.
Computes all reducts in an exhaustive manner. Suitable for small systems only.

2.3.6.5.5 〈kernel/rses/algorithms/rsesgeneticreducer.∗〉 Specialization of RSESStaticReducer. Pro-
vides a wrapper around the RSES implementation of the genetic algorithm of Wróblewski [18].

2.3.6.5.6 〈kernel/rses/algorithms/rsesjohnsonreducer.∗〉 Specialization of RSESStaticReducer. Pro-
vides a wrapper around the RSES implementation of the greedy algorithm of Johnson [9]. See the JohnsonRe-
ducer class for an alternative implementation.

2.3.6.5.7 〈kernel/rses/algorithms/rsesorthogonalfilescaler.∗〉 Specialization of OrthogonalFileScaler.
Provides a wrapper around the implementation offered by the RSES library.

2.3.6.5.8 〈kernel/rses/algorithms/rsesorthogonalscaler.∗〉 Provides a wrapper around the RSES
implementation of the discretization algorithm of Nguyen and Skowron [11]. A very fast and efficient imple-
mentation, but with no support for approximate solutions. See also the description of the BROrthogonalScaler
class.

2.3.6.5.9 〈kernel/rses/algorithms/rsesreducer.∗〉 Specialization of Reducer for algorithms hailing
from the RSES library. No support provided for IDGs or boundary region thinning.

2.3.6.5.10 〈kernel/rses/algorithms/rsesrulegenerator.∗〉 Provides a wrapper around the RSES TRe-
dRulCalc::GenerateRules method. No IDG support provided.

23

2.3.6.5.11 〈kernel/rses/algorithms/rsesrulelessreductfilter.∗〉 Specialization of ReductFilter. Re-
moves a RSESReduct object if the embedded RSES TReduct object has no TRule object derived from it.

2.3.6.5.12 〈kernel/rses/algorithms/rsesstaticreducer.∗〉 Base class for algorithms from the RSES
library that compute proper reducts, and that can be used as a subcomponent of the RSESDynamicReducer
class. Provides a wrapper around methods in the RSES TRedRulCalc class. Algorithms in the RSESStaticRe-
ducer family do not provide support for approximate reducts.

2.3.7 〈kernel/sav〉

Contains code relevant to the SAV library.

2.3.7.1 〈kernel/sav/library〉 Contains legacy code from a library for genetic computations.17

2.3.7.1.1 〈kernel/sav/library/ea〉 Contains general code for genetic algorithms.

2.3.7.1.2 〈kernel/sav/library/hits〉 Contains code specific for applying genetic algorithms to com-
pute minimal hitting sets.

2.3.7.2 〈kernel/sav/algorithms〉 Contains encapsulating wrappers for some of the algorithms from
the SAV library.

2.3.7.2.1 〈kernel/sav/algorithms/savgeneticreducer.∗〉 Provides a wrapper around methods in the
SAV Hits class for computing minimal hitting sets. Implements the algorithm of Vinterbo and Øhrn [17]. Sup-
port for approximate solutions is provided.

2.4 〈common〉

Contains potentially front-end dependent code called from the kernel, e.g., methods for giving error mes-
sages, installing prototype objects and linking them to their associated dialogs, etc.

2.4.1 〈common/configuration.∗〉

Static scope around system configuration variables.

TIP Make sure this file is compiled as part of any released builds. That way, the build timestamp is sure to
be valid.

2.4.2 〈common/installer.∗〉

Determines which algorithms and structures that are available to the user, i.e., that are “installed” as proto-
type objects in the ObjectManager pool.

TIP Use the INSTALLSTRUCTURE and INSTALLALGORITHM macros to install prototype structures and
algorithms. For a class to be available throughout the system, a prototype object has to be installed.

The INSTALLALGORITHM macro also associates an Algorithm object with its GUI dialog box, if relevant.
17Developed by Staal A. Vinterbo, Department of Computer and Information Science, Norwegian University of Science and Technol-

ogy, Trondheim, Norway.

24

2.4.3 〈common/messagehelper.∗〉

Static helper class for the Message class. Takes care of routing the messages to the GUI or wherever.

TIP Methods from the MessageHelper class should never be called directly from the kernel. Use the Message
class instead.

2.4.4 〈common/objectmanager.∗〉

Manages the algorithms and structures that are available to the user, i.e., that are “installed” as prototype
objects. Objects are installed by the static Installer class. Used by, e.g., the static Creator class.

2.5 〈frontend〉

Contains the GUI front-end of ROSETTA.

2.5.1 〈frontend/algorithms〉

Contains algorithmic objects that depend on MFC and the Windows platform, specifically ODBC code.

2.5.2 〈frontend/dialogs〉

Contains code for handling the logic behind the dialog boxes.

2.5.2.1 〈frontend/dialogs/structuredialogs〉 Contains code for handling the logic behind the dia-
log boxes related to structural objects such as statistics dialogs, etc.

2.5.2.2 〈frontend/dialogs/algorithmdialogs〉 Contains code for handling the logic behind the dia-
log boxes related to algorithmic objects such as dialogs for entering algorithm parameters, etc.

2.5.3 〈frontend/views〉

Contains code for displaying structural objects in the front-end such as views for decision tables, project trees,
etc.

3 Compiler Settings

In order to compile and make use of the ROSETTA C++ library, you need to create a make file. If you are using
Microsoft Visual C++, you will probably use the workspace feature of the development environment to do
this, thus hiding away the details of the make (or nmake) file.

For examples of make or workspace files, see [15].

3.1 Directory Search Order

The ROSETTA C++ library includes files in brackets. A library like STL, however, includes files in double
quotes. This might not cause any problems for you, but if it does you can get around it by redefining the

25

order in which include directories are searched. You will have to specify the path that the bracket-included
files are relative to, anyway.

Let $ROSETTA denote the directory where you have installed the ROSETTA C++ library, e.g., /source/rosetta.
Then, let the list of directories searched start with the following:18

$ROSETTA/kernel/system/stl
$ROSETTA

3.2 Preprocessor Flags

There are several preprocessor flags worth knowing about:

OLDCASTS Set this flag if your compiler is so old that it does not have support for the new C++-style
casting mechanisms. If not set, the constructs const cast, dynamic cast, static cast and reinterpret cast will
be used.

MEMTMPL Set this flag if your compiler supports member templates in a robust manner. (For example,
Microsoft Visual C++ 6.0 is not robust enough.) This enables the Handle template to be used in a more
flexible manner.19

RSES Set this flag if you are compiling with the RSES library. If set, structures and algorithms from the
RSES library will be installed by the Installer class. Otherwise, simple drop-in substitute classes will be
installed instead.

DEBUG Set this flag if you are compiling a debug version of the library. If set, several methods will perform
range checking, output debug messages, and do more extensive validation of parameters and data. As
a consequence, the library will run in a slightly more sluggish manner if this flag is set.

ROSGUI Set this flag if you are compiling with the ROSETTA GUI.

MSGGUI Set this flag if you want the MessageHelper class to use MFC message methods, even though you
are not compiling with the ROSETTA GUI. If not set, messages are redirected to cout and cerr instead.

MSC VER This flag is automatically set if you are using Microsoft Visual C++, and then holds the compiler’s
version number.

WIN32 Set this flag if you are compiling under 32-bit Windows. (If you are using Microsoft Visual C++, this
is done automatically.) If set, some constants in Bits are hardcoded, thus avoiding one multiplication.

STLport [16], the STL implementation that accompanies the ROSETTA C++ library, has a wealth of flags that
can be set. For most compilers and platforms, you won’t have to dabble with these as STLport is able to
autodetect sensible settings. However, you can set them explicitly, if necessary:

STL NO NEW IOSTREAMS The ROSETTA C++ library does not make use of the new iostream run-time
libraries. Set this flag to signal that STLport should not either.

If you are using Microsoft Visual C++, you might want to know about the following preprocessor flags:

AFX NO DEBUG CRT In debug mode, Microsoft Visual C++ has its own version of new. If this causes
problems for the Referent overloadings of new, try defining this flag.

18Under Microsoft Visual C++ 6.0, you specify this under the Directories tab in the dialog box that appears if you select the
Tools/Options... menu entry.

19For reasons of backwards compatibility and lack of member template support, the ROSETTA C++ library in several places uses
ordinary pointers instead of Handle objects in method interfaces. This in turn makes it necessary to make slightly awkward calls to
Handle::GetPointer to pass parameters across these interfaces.

26

4 Miscellaneous

4.1 Exceptions

For historical reasons, mainly, the ROSETTA C++ library does not really make use of the exception handling
mechanisms of C++, i.e., try, catch and throw. But doing so would have made error handling simpler in
some places. Instead, the ROSETTA C++ library has adopted the convention of checking the return values of
methods. Methods generally return false, NULL or an undefined value20 if they fail.

4.2 Coding Standards

Coding standards, i.e., conventions and rules regarding syntax, help make code more perspicuous, stream-
lined and easier to read. Some conventions in the ROSETTA C++ library are worth knowing about, and are
listed below.21 (It is probably easier to interpret the items below if you study an example file at this time, e.g.,
〈kernel/structures/graph.∗〉.)

• An indentation unit of 2 is used throughout. Set the tab properties of your editor accordingly.

• Names of classes and methods are capitalized. Uppercase letters midword are used for names that
logically span more than one word.

• Variable names are written in lowercase. Underscores midword may be used for names that logically
span more than one word.

• Member variables always have a trailing underscore in their names.

• Method implementations have a standardized header. Files and class definitions carry a similar stan-
dardized header.

• Declarations of member variables and member methods are vertically aligned in the class definitions.

• Declarations of overloaded methods are prefixed with a header line stating at which superclass the
methods were originally defined. The order these are given in should correspond with the class hierar-
chy. Constructors are listed first, new or local methods are listed last.

• Most macros are written in uppercase letters. Container class macros and casting macros are exceptions
to this rule.

• A single space is always added between such keywords as, e.g., if and for, their associated parentheses,
and curly braces. Curly braces occur on the same line as the keyword.

if (i > 0) {

for (j = 0; j < i; j++) {

DoThis(i, i + j);

DoThat(i, i - j);

}

}

else {

DoThis(-i, -i);

}

Similarly, a single space is added after commas, around binary operators, etc.

• More instances than necessary of the keywords public, protected and private may be used to separate
between declarations of member variables and member methods.

• In method implementations, the return type is given on a separate line above the method head.

20See the description of the static Undefined class in 〈kernel/basic/undefined.∗〉.
21There are probably several more items that should be added to the list but that are not. Either because I have forgotten to list them,

or, most likely, because I am too lazy to complete the list.

27

A Algorithm Signatures

In general, classes derived from Algorithm and Structure interact via the Apply method. Algorithmic objects
take as input structural objects, and return structural objects. The output object may be the same as the input
object, or it may be a new object. Type signatures for classes derived from Algorithm can be found in Table 1.

Class Input type Output type

Approximator DecisionTable Approximation
BatchClassifier DecisionTable BatchClassification
Classifier InformationVector Classification
Completer DecisionTable DecisionTable
DecisionTableExporter DecisionTable DecisionTable
DecisionTableImporter DecisionTable DecisionTable
DictionaryExporter {Dictionary, DecisionTable} {Dictionary, DecisionTable}
DictionaryImporter {Dictionary, DecisionTable} {Dictionary, DecisionTable}
Executor Structure Structure
Partitioner DecisionTable EquivalenceClasses
ReductExporter Reducts Reducts
ReductFilter Reducts Reducts
ReductImporter DecisionTable Reducts
Reducer DecisionTable Reducts
Reporter Structure Structure
RSESDecisionTableImporter RSESDecisionTable RSESDecisionTable
RSESOrthogonalFileScaler RSESDecisionTable RSESDecisionTable
RSESOrthogonalScaler RSESDecisionTable RSESDecisionTable
RSESReducer RSESDecisionTable RSESReducts
RSESRuleGenerator RSESReducts RSESRules
RSESRulelessReductFilter RSESReducts RSESReducts
RuleBasedClassifier InformationVector RuleBasedClassification
RuleExporter Rules Rules
RuleFilter Rules Rules
RuleGenerator Reducts Rules
SerialExecutorLoop DecisionTable Structure
Scaler DecisionTable DecisionTable
ScriptAlgorithm Structure Structure
Splitter DecisionTable {DecisionTable, DecisionTables}

Table 1: Type signatures for classes derived from Algorithm, i.e., input/output type relationships for the Apply
method. For classes that due to inheritance match more than type, the most specific type listed applies.

B Class Hierarchies

The following figures display the class hierarchies in the ROSETTA C++ library. Only classes involved in
inheritance are displayed, i.e., stand-alone classes are not shown. Classes from external libraries are also not
shown. All inheritance is public, unless otherwise indicated.

Figure 1 displays the top level hierarchy. All classes that are derived from Referent can be used together with
the Handle mechanism.

Figure 2 displays the first part of the Structure hierarchy. Classes derived from Structure are able to program-
matically interface with classes derived from Algorithm. Not all classes derived from Structure do so,
though, or are even intended to do so. Figure 2 is a subhierarchy of Figure 1.

Figure 3 displays the second part of the Structure hierarchy, and is a continuation of Figure 2.

28

Figure 4 displays the third part of the Structure hierarchy, and is a continuation of Figure 2 and Figure 3.

Figure 5 displays the AnnotatedStructure hierarchy. Structural objects that have Annotation objects associated
with them are derived from this class. An object is typically annotated if a user wants to interact with it
through some user interface. Figure 5 is a subhierarchy of Figure 2.

Figure 6 displays the first part of the Algorithm hierarchy. Classes derived from Algorithm are able to pro-
grammatically interface with classes derived from Structure. Figure 2 is a subhierarchy of Figure 1.

Figure 7 displays the second part of the Algorithm hierarchy, and is a continuation of Figure 6.

Figure 8 displays the Classifier hierarchy. An algorithm in this family classifies a single object, given its cor-
responding InformationVector structure, and returns a Classification structure that holds a set of possible
classes. A Classifier object is typically used as a subcomponent of an algorithm in the BatchClassifier
family. Figure 8 is a subhierarchy of Figure 6.

Figure 9 displays the Completer hierarchy. An algorithm in this family takes as input a DecisionTable object
with missing values, and returns a DecisionTable object that has no missing values. Figure 9 is a subhier-
archy of Figure 6.

Figure 10 displays the Executor hierarchy. Algorithms in this family execute command scripts. Figure 10 is a
subhierarchy of Figure 6.

Figure 11 displays the Exporter hierarchy. Algorithms that export some kind of Structure object to some
external medium in some format inherit from Exporter. Figure 11 is a subhierarchy of Figure 6.

Figure 12 displays the DecisionTableExporter hierarchy. Algorithms that export some aspect of a DecisionTable
object to some format inherit from this class. Figure 12 is a subhierarchy of Figure 11.

Figure 13 displays the Filter hierarchy. Algorithms in Filter family remove individual structural objects from
collections of such according to some filtering criterion. Figure 13 is a subhierarchy of Figure 7.

Figure 14 displays the Importer hierarchy. Algorithms that import structural objects from some medium
inherit from Importer. Figure 14 is a subhierarchy of Figure 7.

Figure 15 displays the Reducer hierarchy. Algorithms in this family compute reducts of the input Deci-
sionTable object. The returned Reducts structure may possibly have a Rules structure associated with
it. Figure 15 is a subhierarchy of Figure 7.

Figure 16 displays the RuleGenerator hierarchy. Algorithms in this family produce Rules objects from Reducts
objects. Figure 16 is a subhierarchy of Figure 7.

Figure 17 displays the Scaler hierarchy. Algorithms that inherit from Scaler discretize attributes in Deci-
sionTable objects. Figure 17 is a subhierarchy of Figure 7.

Figure 18 displays the ScriptAlgorithm hierarchy. Algorithms should inherit from ScriptAlgorithm if they are
only intended used in command scripts. Figure 18 is a subhierarchy of Figure 7.

Figure 19 displays the Splitter hierarchy. Algorithms in this family split DecisionTable objects into several
distinct DecisionTable objects. Figure 19 is a subhierarchy of Figure 7.

Figure 20 displays miscellaneous classes where inheritance is involved.

Figure 21 displays the RuleEvaluator hierarchy. Classes in this hierarchy are helper classes for evaluating the
“quality” of Rule objects. Figure 21 is a subhierarchy of Figure 1.

29

Figure 1: Referent hierarchy. Top level hierarchy.

Figure 2: Structure hierarchy, part 1. Subhierarchy of Figure 1.

30

Fi
gu

re
3:

St
ru

ct
ur

e
hi

er
ar

ch
y,

pa
rt

2.
Su

bh
ie

ra
rc

hy
of

Fi
gu

re
1.

31

Fi
gu

re
4:

St
ru

ct
ur

e
hi

er
ar

ch
y,

pa
rt

3.
Su

bh
ie

ra
rc

hy
of

Fi
gu

re
1.

32

Figure 5: AnnotatedStructure hierarchy. Subhierarchy of Figure 2.

33

Fi
gu

re
6:

A
lg

or
it

hm
hi

er
ar

ch
y,

pa
rt

1.
Su

bh
ie

ra
rc

hy
of

Fi
gu

re
1.

34

Fi
gu

re
7:

A
lg

or
it

hm
hi

er
ar

ch
y,

pa
rt

2.
Su

bh
ie

ra
rc

hy
of

Fi
gu

re
1.

35

Figure 8: Classifier hierarchy. Subhierarchy of Figure 6.

Figure 9: Completer hierarchy. Subhierarchy of Figure 6.

Figure 10: Executor hierarchy. Subhierarchy of Figure 6.

36

Fi
gu

re
11

:E
xp

or
te

r
hi

er
ar

ch
y.

Su
bh

ie
ra

rc
hy

of
Fi

gu
re

6.

37

Fi
gu

re
12

:D
ec

is
io

nT
ab

le
E

xp
or

te
r

hi
er

ar
ch

y.
Su

bh
ie

ra
rc

hy
of

Fi
gu

re
11

.

38

Fi
gu

re
13

:F
ilt

er
hi

er
ar

ch
y.

Su
bh

ie
ra

rc
hy

of
Fi

gu
re

7.

39

Fi
gu

re
14

:I
m

po
rt

er
hi

er
ar

ch
y.

Su
bh

ie
ra

rc
hy

of
Fi

gu
re

7.

40

Figure 15: Reducer hierarchy. Subhierarchy of Figure 7.

Figure 16: RuleGenerator hierarchy. Subhierarchy of Figure 7.

41

Fi
gu

re
17

:S
ca

le
r

hi
er

ar
ch

y.
Su

bh
ie

ra
rc

hy
of

Fi
gu

re
7.

42

Figure 18: ScriptAlgorithm hierarchy. Subhierarchy of Figure 7.

Figure 19: Splitter hierarchy. Subhierarchy of Figure 7.

Figure 20: Miscellaneous classes.

43

Fi
gu

re
21

:R
ul

eE
va

lu
at

or
hi

er
ar

ch
y.

Su
bh

ie
ra

rc
hy

of
Fi

gu
re

1.

44

References

[1] H. R. Arkes, N. W. Dawson, T. Speroff, F. E. Harrel, Jr., C. Alzola, R. Phillips, N. Desbiens, R. K. Oye,
W. Knaus, and A. F. Connors, Jr. The covariance decomposition of the probability score and its use in
evaluating prognostic estimates. Medical Decision Making, 15:120–131, 1995.

[2] J. G. Bazan, A. Skowron, and P. Synak. Dynamic reducts as a tool for extracting laws from decision
tables. In Proc. International Symposium on Methodologies for Intelligent Systems, volume 869 of Lecture
Notes in Artificial Intelligence, pages 346–355. Springer-Verlag, 1994.

[3] I. Bruha. Quality of decision rules: Definitions and classification schemes for multiple rules. In
G. Nakhaeizadeh and C. C. Taylor, editors, Machine Learning and Statistics: The Interface, chapter 5, pages
107–131. John Wiley & Sons, 1997.

[4] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous
features. In A. Prieditis and S. Russell, editors, Proc. Twelfth International Conference on Machine Learning,
pages 194–202. Morgan Kaufmann, 1995.

[5] The GraphViz homepage. [http://www.research.att.com/sw/tools/graphviz/]. AT&T Research.

[6] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic
(ROC) curve. Radiology, 143:29–36, Apr. 1982.

[7] J. A. Hanley and B. J. McNeil. A method of comparing the areas under receiver operating characteristic
curves derived from the same cases. Radiology, 148:839–843, Sept. 1983.

[8] R. C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine
Learning, 11(1):63–91, Apr. 1993.

[9] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System
Sciences, 9:256–278, 1974.

[10] The MATLAB homepage. [http://www.mathworks.com/products/matlab/]. The MathWorks, Inc.

[11] H. S. Nguyen and A. Skowron. Quantization of real-valued attributes. In Proc. Second International Joint
Conference on Information Sciences, pages 34–37, Wrightsville Beach, NC, Sept. 1995.

[12] A. Øhrn. Discernibility and Rough Sets in Medicine: Tools and Applications. PhD thesis, Norwegian Univer-
sity of Science and Technology, Department of Computer and Information Science, Dec. 1999. NTNU
report 1999:133. [http://www.idi.ntnu.no/~aleks/thesis/].

[13] A. Øhrn. ROSETTA Technical Reference Manual. Knowledge Systems Group, Department of Computer
and Information Science, NTNU, Trondheim, Norway, Nov. 1999.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press, second edition, 1992.

[15] The ROSETTA C++ library homepage. [http://www.idi.ntnu.no/~aleks/thesis/source/]. Norwe-
gian University of Science and Technology, Department of Computer and Information Science.

[16] The STLport homepage. [http://www.stlport.org/].

[17] S. Vinterbo and A. Øhrn. Approximate minimal hitting sets and rule templates. In Predictive Models
in Medicine: Some Methods for Construction and Adaptation. Department of Computer and Information
Science, Dec. 1999. NTNU report 1999:130. [http://www.idi.ntnu.no/~staalv/dev/thesis.ps.gz].

[18] J. Wróblewski. Finding minimal reducts using genetic algorithms. In Proc. Second International Joint
Conference on Information Sciences, pages 186–189, Sept. 1995.

45

http://www.research.att.com/sw/tools/graphviz/
http://www.mathworks.com/products/matlab/
http://www.idi.ntnu.no/~aleks/thesis/
http://www.idi.ntnu.no/~aleks/thesis/source/
http://www.stlport.org/
http://www.idi.ntnu.no/~staalv/dev/thesis.ps.gz

